Rabu, 30 April 2014

Spesifikasi Mesin Sepeda Motor


Spesifikasi Mesin Sepeda Motor

 
Biasanya untuk pemasaran produsen memberikan informasi data tentang mesin (spesifikasi mesin) sepeda motor. Informasi data mengenai spesifikasi mesin sepeda motor yang biasa diberikan produsen dalam memasarkan produk mereka dapat kita lihat pada tabel. 4.
 
Tabel 4. Contoh Spesifikasi Mesin dari Suzuki Smash
 
Spesifikasi mesin
Contoh data yang diberikan
Keterangan
Jenis mesin
Empat langkah
Jenis yang lain adalah mesin dua langkah
SOHC
Pilihan lainnya DOHC, OHC, SV, dll
Pendingin udara
Yang lainnya ada berpendingin air
Jumlah silinder
1
Isi silinder
109 cc
Volume silinder adalah jumlah total dari volume langkah ditambah dengan volume ruang bakar. Volume ruang bakar adalah volume ruangan yang terbentuk antara kepala silinder dan kepala piston mencapai TMA. Volume langkah adalah volume yang terbentuk pada saat piston bergerak keatas dari TMB ke TMA, dimana volume langkah yaitu volume yang dipindahkan saat piston bergerak tadi. Dihitung dengan suatu rumus dengan satuan cc atau cm3 atau liter/M3 .
Langkah piston
48,8 mm
Langkah adalah gerak tunggal piston yang diukur dengan satuan mm
Diameter silinder
53,5 mm
Diameter silinder adalah diameter bagian dalam dari silinder, diukur dengan satuan mm
Perbandingan kompresi
9,6:1
Perbandingan kompresi adalah perbandingan antara volume silinder dengan volume ruang bakar. Batasan-batasannya adalah: -Mesin dua langkah : 6-8 :1 -Mesin empat langkah: 8-10: 1
Daya maksimum
7,7 PS/700 rpm
PS (prerd starke in jerman) adalah tenaga untuk menggerakkan obyek seberat 75 Kg sejauh 1m dalam 1 secon (makin besar tenaga makin besar jumlah kerja persatuan waktu) 1 PS = 75 Kg.m/sec
Torsi maksimum
O,81 Kg-m/5500 rpm
Ketika sepeda motor bekerja dengan torsi maximum, gaya gerak roda belakang juga maximum. Dengan kata lain daya dorong roda belakang paling besar ketika torsi mesin juga maksimal. Daya dorong roda belakang sama dengan gaya tarik-menarik roda belakang motor dapat maju kedepan dengan adanya gaya tarik ini yang melawan gaya tahanan pada saat berjalan
System bahan bakar
Karburator
Saringan udara
Elemen kertas
System starter
Listrik dan engkol
System pelumasan
Perendaman oli
Teknik Sepeda Motor

Selasa, 29 April 2014

Sumber Listrik Sistem Penerangan

Sumber Listrik Sistem Penerangan


Sumber listrik untuk sistem penerangan dapat dibedakan menjadi beberapa tipe, diantaranya:

a. Sumber Listrik AC dengan Pengontrolan pada Main Switch (Saklar Utama)

Sistem penerangan pada tipe ini hampir semuanya menggunakan arus listrik AC, kecuali peralatan pemberi isyarat (seperti lampu sein). Sistem ini digunakan pada motor-motor kecil yang menggunakan flywheel magnet (gambar 3.69).


Lampu-lampu akan menyala jika mesin sedang hidup dengan posisi main switch (saklar utama) pada nomor II dan atau nomor
III. Pada sistem ini tidak ada pengaturan arus dan tegangan yang keluar dari flywheel magnet. Oleh karena itu, pada kecepatan rendah, output listrik terbatas dan lampu menyala agak suram. Sedangkan pada kecepatan tinggi, lampu-lampu akan cenderung lebih terang.


b. Sumber Listrik AC dan DC dengan Pengontrolan pada LampSwitch (Saklar Lampu)

Sistem penerangan tipe ini menggunakan sumber listrik DC dari baterai untuk lampu sein, lampu belakang, dan lampu pada dashboard. Sumber listrik AC digunakan untuk lampu kepala.


Pengontrolan lampu-lampu dilakukan secara terpisah pada saklar lampunya. Untuk lampu belakang, lampu sein, dan lampu dashboard, bisa dihidup-matikan oleh saklar utama seperti terlihat pada gambar 3.70 di atas.


c. Sumber Listrik AC dengan pengontrolan pada Regulator

Sistem penerangan dengan pengontrolan sumber listrik menggunakan regulator dan penyearahan arus oleh rectifer meupakan tipe yang banyak digunakan pada sepeda motor saat ini. Arus dan tegangan yang keluar sumber listrik AC tersebut digunakan untuk lampu kepala, lampu belakang, lampu rem, lampu dashboard dan sebagainya. Namun dalam penggunaan lampu-lampu tadi, tegangannya dikontrol oleh regulator sehingga bisa memperpanjang umur pakainya.


d. Sumber listrik DC

Sistem penerangan dengan sumber listrik DC banyak digunakan pada sepeda motor sedang sampai besar. Semua lampu-lampu sumber listriknya berasal dari baterai. Jika dihasilkan tegangan yang lebih besar (misalnya pada putaran tinggi), daya listriknya bisa langsung digunakan untuk sistem penerangan karena semua output listriknya sudah dalam arus DC.

Senin, 28 April 2014

Lampu Belakang dan Rem (Tail light dan Brake light)

Lampu Belakang dan Rem (Tail light dan Brake light)


Lampu belakang berfungsi memberikan isyarat jarak sepeda motor pada kendaraan lain yang berada di belakangnya ketika malam hari. Lampu belakang pada umumnya menyala bersama dengan lampu kecil yang berada di depan. Lampu ini sering disebut dengan lampu kota, bahkan kadang-kadang disebut lampu senja karena biasanya sudah mulai dinyalakan sebelum hari terlalu gelap. Untuk bagian depan disebut lampu jarak (clereance light) dan untuk bagian belakang disebut lampu belakang (tail light).

Sedangkan rem berfungsi untuk memberikan isyarat pada kendaraan lain agar tidak terjadi benturan saat kendaraan mengerem. Lampu rem pada sepeda motor biasanya digabung dengan lampu belakang. Maksudnya dalam satu bola lampu terdapat dua filamen, yaitu untuk lampu belakang dan lampu rem (lihat gambar 3.54 di bawah ini). Lampu yang menyalanya lebih redup (diameter kawat filament-nya lebih kecil) untuk lampu belakang dan lampu yang menyalanya lebih terang (diameter kawat filament-nya lebih besar) untuk lampu rem.


Komponen-komponen untuk sistem lampu belakang selain kabelkabel dan konektor antara lain (lihat gambar 3.51):
a. Saklar lampu (lighting switch) Penjelasan saklar lampu sudah dibahas pada bagian lampu kepala.
b. Lampu belakang dan dudukannya Seperti terlihat pada gambar 3.55 di atas, bola lampu belakang digabung langsung dengan bola lampu rem. Pemasangan bola lampu belakang biasanya disebut dengan tipe bayonent yaitu menempatkan bola lampu pada dudukannya, dimana posisi pasak (pin) pada bola lampu harus masuk pada alur yang berada pada dudukannya.

Komponen-komponen untuk sistem lampu rem selain kabel-kabel dan konektor antara lain (lihat gambar 3.51):
a. Saklar lampu rem depan (front brake light switch) Saklar lampu rem depan berfungsi untuk .menghubungkan arus dari baterai ke lampu rem jika tuas/handel rem ditarik (umumnya berada pada stang/kemudi sebelah kanan). Dengan menarik tuas rem tersebut, maka sistem rem bagian depan akan bekerja, oleh karena itu lampu rem harus menyala untuk memberikan isyarat/tanda bagi pengendara lainnya.
b. Saklar lampu rem belakang (rear brake light switch) Saklar lampu rem belakang berfungsi untuk .menghubungkan arus dari baterai ke lampu rem jika pedal rem ditarik (umumnya berada pada dudukan kaki sebelah kanan). Dengan menginjak pedal rem tersebut, maka sistem rem bagian belakang akan bekerja, oleh karena itu lampu rem harus menyala untuk memberikan isyarat/tanda bagi pengendara lainnya.
c. Lampu rem dan dudukannya Seperti terlihat pada gambar 3.55 di atas, bola lampu belakang digabung langsung dengan bola lampu rem. Pemasangan bola lampu belakang biasanya disebut dengan tipe bayonent yaitu menempatkan bola lampu pada dudukannya, dimana posisi pasak (pin) pada bola lampu harus masuk pada alur yang berada pada dudukannya.

Minggu, 27 April 2014

Daftar istilah dan singkatan buku Teknik Sepeda Motor

Daftar istilah dan singkatan buku Teknik Sepeda Motor Jilid 1 SMK

Tabel Daftar istilah dan singkatan

No
Istilah
Singk
Penjelasan
1
Accelerator pump
AC
Pompa yang terdapat di dalam karburator untuk menaikkan jumlah bahan bakar atau menggemukkan campuran.
2
Air/fuel Ratio
A/F Ratio
Air/fuel ratio merupakan perbandingan berat campuran udara/bahan bakar yang membentuk gas yangsiap terbakar.
3
Automatic Timing Unit
ATU
Adalah unit berfungsi mempercepat timing pembakaran.
4
Bearing
--
Merupakan susunan bola keras tersusun melingkar untuk melancarkan putaran sehingga tidak terjadi panas.
5
Bore
--
Diameter silinder
6
Bottom Dead Center
BDC
Posisi piston terdekat dari poros engkol. Piston seakanberhenti pada waktu berba-lik arah ke posisi TDC (TMB)
7
Brake Horse Power
BHP
Ukuran kekuatan motor (output)
8
Camshaft
Poros putar untuk menggerakkan katup buang dan katup masuk, sejalan dengan putaran mesin.
9
Compression Ignition
CI
Motor bakar dengan pembakaran dipicu oleh campuran bahan bakar dengan tekanan dan temperatur tinggi. 
10
Compression ration
CR
Perbandingan volume ruangan silinder tambah ruang bakar dengan volume ruang bakar.
11
Carburattor
Carb.
Merupakan komponen berfungsi mencampurkan bahan bakar dan udara secara tepat.
12
Charging system Clutch
--
Sistem pengisian battery dari alternator, rectifier dan regulator
13
Crankshaft
Poros putar (poros engkol) berfungsi merubah gerakan turun naik piston menjadi putaran
14
Detonation
Pembakaran yang terjadi pada ruang bakar, tetapi diluar timing yang direncanakan.
15
Electrolyte
-
Adalah cairan (air keras) pengisi dalam batery yang terdiri dari asam sulfat dan air aki.
16
Internal Combustion Engine
ICE
Motor bakar dengan pembakaran terjadi di dalamsilinder.
17
Society of Automotive Engineer
SAE
Standar kekentalan minyak pelumas
18
Spark Ignition
SI
Motor bakar dengan pembakaran dipicu oleh busi.
19
Top Dead Center
TDC
Posisi piston terjauh dari poros engkol. Piston seakan berhenti pada waktu berbalik arah ke posisi terdekat dari poros engkol. Pembakaran tidak terjadi pada waktu posisi terjauh, melainkan beberapasaat sebelum TDC (bTDC). Bila sesudah posisi TDC disebut aTDC atau TMA
20
Direct Injection
DI
Bahan bakar diinjeksi langsung ke ruang bakar
21
Indirect Injection
IDI
Bahan bakar diinjeksi melalui chamber sebelum masuk ke ruang bakar
22
Octane rating
Jumlah bahan octane pada bahan bakar, dipakai sebagai ukuran Nilai Oktan. Semakin tinggi NO semakin tinggi temperatur bakar (knockresistence)
23
Oil Injection
Sistem pelumasan dengan mesin, dimana minyak pelumas diinjeksikan kedalammesin.

Rabu, 23 April 2014

Komponen Utama Sepeda Motor

Komponen Utama Sepeda Motor
 
Sepeda motor terdiri dari beberapa komponen dasar. Bagaikan kita manusia, kita terdiri atas beberapa bagian, antara lain bagian rangka, pencernaan, pengatur siskulasi darah, panca indera dan lain sebagainya. Maka sepeda motorpun juga seperti itu, ada bagian-bagian yang membangunnya sehingga ia menjadi sebuah sepeda motor.
 
Secara kelompok besar maka komponen dasar sepeda motor terbagi atas:
        1. Sistem mesin
        2. Sistem kelistrikan
        3. Rangka/chassis
 
Masing-masing komponen dasar tersebut terbagi lagi menjadi beberapa bagian pengelompokkan kearah penggunaan, perawatan dan pemeliharaan yang lebih khusus yaitu:
 
 
Sistem Mesin
 
Terdiri atas :
    a. Sistem tenaga mesin
        Sebagai sumber tenaga penggerak untuk berkendaraan, terdiri dari bagian:
            - Mesin/engine
            - Sistem bahan bakar
            - Sistem pelumasan
            - Sistem pembuangan
            - Sistem pendinginan
 
Gambar 1.1 Pemasangan perkakas yang lengkap pada sepeda motor
 
    b. sistem transmisi penggerak merupakan rangkaian transmisi dan tenaga mesin ke roda belakang, berupa:
            - Mekanisme kopling
            - Mekanisme gear
            - Transmisi
            - Mekanisme starter
 
 
Sistem Kelistrikan
 
Mekanisme kelistrikan dipakai untuk menghasilkan daya pembakaran untuk proses kerja mesin dan sinyal untuk menunjang keamanan berkendaraan. Jadi semua komponen yang berhubungan langsung dengan energi listrik dikelompokkan menjadi bagian kelistrikan. Bagian kelistrikan terbagi menjadi:
            - Kelompok pengapian             - Kelompok pengisian
            - Kelompok beban


Rangka/Chassis
 
Terdiri dari beberapa komponen untuk menunjang agar sepeda motor dapat berjalan dan berbelok. Komponennya adalah:
            - Rangka
            - Kelompok kemudi
            - Kelompok suspensi
            - Kelompok roda
            - Kelompok rem
            - Tangki bahan bakar
            - Tempat duduk
            - Fender
 

Selasa, 22 April 2014

Sistem Instrumentasi dan Tanda Peringatan (Instrumentation and Warning System)

Sistem Instrumentasi dan Tanda Peringatan (Instrumentation and Warning System)


Yang dimaksud dengan instrumentasi adalah perlengkapan sepeda motor berupa alat ukur yang memberikan informasi kepada pengendara tentang keadaan sepeda motor tersebut. Sistem instrumentasi pada sepeda motor tidak sama jumlahnya, mulai dari sepeda motor dengan instrumentasi sederhana sampai sepeda motor yang dilengkapi dengan instrumen yang banyak. Sistem instrumentasi yang lengkap antara lain terdiri dari; speedometer (pengukur kecepatan kendaraan), tachometer (pengukur putaran mesin), ammeter (pengukur arus listrik), voltmeter (pengukur tegangan listrik), clock (jam), fuel and temperature gauges (pengukur suhu dan bahan bakar), oil pressure gauge (pengkur tekanan oli) dan sebagainya.

Sama halnya dengan sistem instrumentasi, sistem tanda peringatan (warning system) pada sepeda motor juga tidak sama jumlahnya. Kebanyakan model sepeda motor generasi sekarang, lampulampu tanda peringatan disusun dan dipasangkan pada suatu tampilan (display) lengkap yang akan menampilkan status/keadaan dan kondisi umum dari mesin.

Pada beberapa model, instrumentasi di dihubungkan dengan central control unit (unit pengontrol) yang akan memonitor seluruh aspek dari mesin dan fungsi sistem kelistrikan saat mesin dijalankan. Informasinya diperoleh dari berbagai swicth (saklar) dan sensor. Jika dalam sistem muncul kesalahan (terdapat masalah) akan ditampilkan dalam bentuk warning light (lampu tanda peringatan) atau dalam panel LCD (liquid crystal display) bagi beberapa model sepeda motor.

    a. Speedometer

Speedometer adalah alat untuk memberikan informasi kepada pengendara tentang kecepatan kendaraan (sepeda motor). Speedometer pada sepeda motor ada yang digerakkan secara mekanik, yaitu kawat baja (kabel speedometer) dan secara elektronik. Speedometer yang digerakkan oleh kabel biasanya dihubungkan ke gigi penggerak pada roda depan, tetapi ada juga yang dihubungkan ke output shaft (poros output) transmisi/persneling untuk mendapatkan putarannya.


Pada bagian speedometernya terdapat magnet permanen yang diputar oleh kabel tersebut. Penunjukkan jarum kecepatan berdasarkan atas kekuatan medan magnet yang berputar, dan diterima oleh sebuah piringan besi non magnet yang dipasang berhadapan dengannya. Pada speedometer elektronik, sensor pulsa mengirimkan sinyal setiap putaran yang diperoleh dari sproket depan atau output shaft ke unit pengontrol. Hasilnya akan ditampilkan pada panel.


    b. Switch (Saklar) pada Sistem

Tanda Peringatan Saklar-sakar yang terdapat pada sistem tanda peringatan umumnya digerakkan secara mekanik atau langsung digerakkan secara manual (oleh tangan) untuk menghidup-matikan (ONN/OFF) suatu sistem. Diantara saklar-saklar yang termasuk ke dalam sistem tanda peringatan adalah:
 

1) Neutral Switch (Saklar Netral)

Hampir semua sepeda motor dilengkapi dengan netral switch (saklar yang menunjukkan gigi transmisi posisi sedang netral) untuk mengontrol lampu peringatan pada panel instrumen. Umumnya neutral switch diskrupkan ke rumah transmisi. Pada saat gigi transmisi netral, kontak pada saklar akan tertekan (tertutup) dan membuat lampu peringatan di-massa-kan sehingga menyala. Pada sepeda motor yang dilengkapi sistem pengaman, neutral switch juga digunakan untuk mencegah sistem starter tidak bisa dihidupkan jika posisi transmisi sedang masuk gigi (penjelasan detil sudah dibahas pada bagian sistem starter bagian 5 yaitu inovasi sistem starter).


2) Clutch switch (Saklar Kopling)

Clutch switch merupakan tipe plunger dan dipasang pada bagian clutch lever (tuas kopling). Pada sepeda motor yang dilengkapi sistem pengaman, clutch switch juga digunakan untuk mencegah sistem starter tidak bisa dihidupkan jika kopling tidak ditarik (penjelasan detil sudah dibahas pada bagian sistem starter bagian 5 yaitu inovasi sistem starter).


3) Sidestand switch (Saklar Standar samping)

Sidestand switch juga merupakan bagaian dari sistem pengaman yang dirancang agar sepeda motor tidak bisa dijalankan jika sidestand-nya sedang pada posisi diturunkan/digunakan untuk menyandarkan sepeda motor (penjelasan detil sudah dibahas pada bagian sistem starter bagian 5 yaitu inovasi sistem starter). Tipe sidestand switch bisa tipe plunger maupun rotari yang dipasangkan.

Secara sederhana kombinasi hubungan antara neutral switch, clutch switch dan side stand switch yang berfungsi sebagai pengaman dapat dilihat dalam gambar 3.66 di bawah ini:


Berdasarkan gambar 3.66 di atas, dapat diambil kesimpulan bahwa rangkaian starter relay pada sistem starter baru bisa dihubungkan ke massa jika clutch switch dan kickdown switch posisi menutup atau neutral switch saja yang menutup. Clucth switch menutup jika kopling sedang ditarik, sidestand switch menutup jika posisi sidestand sedang dinaikkan (tidak sedang dipakai untuk menyandarkan sepdea motor). Sedangkan neutral swicth menutup kalau posisi gigi transmisi sedang netral (i transmisi tidak masuk gigi).


4) Brake light switch (saklar lampu rem)

Fungsi brake light switch adalah untuk menghidupkan lampu rem ketika rem depan atau rem belakang sedang digunakan. Saklar rem depan biasanya tipe pressure switch (saklar tekanan) yang digerakkan oleh sistem hidrolik rem depan. Sedangkan saklar rem belakang biasanya tipe plunger yang digerakkan melalui pegas pedal rem belakang, dan dapat distel sesuai ketinggian pedal dan jarak bebas rem.



Berdasarkan gambar di atas, jika pedal rem ditarik/ditekan, maka saklar rem akan menutup yang akan menghubungkan arus dari baterai ke massa melalui lampu rem. Akibanya lampu rem akan menyala.

Senin, 21 April 2014

Lampu Kepala/Besar (Headlight)

Lampu Kepala/Besar (Headlight)


Fungsi lampu kepala adalah untuk menerangi bagian depan dari sepeda motor saat dijalankan pada malam hari. Selain kabel dan konektor (sambungan), komponen-komponen sistem lampu kepala antara lain (lihat gambar 3.51) :

    a. Saklar lampu (lighting swicth)
Saklar lampu berfungsi untuk menghidupkan dan mematikan lampu. Pada umumnya saklar lampu pada sepeda motor terdapat tiga posisi, yaitu; 1) posisi OFF (posisi lampu dalam keadaan mati/tidak hidup); 2) posisi 1 (pada posisi ini lampu yang hidup adalah lampu kota/jarak baik depan maupun belakang), dan 3) posisi 2 (pada posisi ini lampu yang hidup adalah lampu kepala/besar dan lampu kota.
    b. Saklar lampu Kepala (dimmer switch)
Saklar lampu kepala berfungsi untuk memindahkan posisi lampu kepala dari posisi lampu dekat ke posisi lampu jauh aau sebaliknya. Posisi lampu dekat biasanya digunakan untuk saat berkendara dalam kota, sedangkan posisi lampu jauh digunakan saat berkendara ke luar kota selama tidak ada kendaraan lain dari arah berlawanan atau ada kendaraan lain dari arah berlawanan namun jaraknya masih cukup jauh dari kita.
    c. Bola lampu kepala (beam)
Terdapat dua tipe lampu besar atau lampu kepala (headlight), yaitu; 1) tipe semi sealed beam, dan 2) tipe sealed beam. Lampu kepala biasanya menggunakan low filament beam untuk posisi lampu dekat dan high filament beam untuk posisi lampu jauh. Penjelasan kapan saatnya menggunakan lampu dekat dan lampu jauh sudah dibahas pada bagian saklar lampu kepala.
 

1) Tipe Semi Sealed Beam

Tipe semi sealed beam adalah suatu konstruksi lampu yang dapat mengganti dengan mudah, dan cepat bola lampunya (bulb) tanpa memerlukan penggantian secara keseluruhan jika bola lampunya terbakar atau putus. Bola lampu yang termasuk tipe semi sealed beam adalah:

    a) Bola lampu biasa (filament tipe Tungsten)
Bola lampu biasa adalah bola lampu yang menggunakan filamen (kawat pijar) tipe tungsten. Bola lampu jenis ini mempunyai keterbatasan yaitu tidak bisa bekerja di atas suhu yang telah ditentukan karena filamen bisa menguap. Uap tersebut bisa menimbulkan endapan yaitu membentuk lapisan seperti perak di rumah lensa kacanya (envelope) dan pada akhirnya bisa mengurangi daya terang lampu tersebut (menjadi suram).


    b) Bola lampu quartz-halogen
Pada bola lampu quartz-halogen, gas halogen tertutup rapat didalam tabungnya, sehingga bisa terhindar dari efek penguapan yang terjadi akibat naiknya suhu. Bola lampu halogen cahayanya lebih terang dan putih dibanding bola tungsten, namun lebih sensitif terhadap perubahan suhu.


Bola lampu quartz-halogen lebih panas dibandingkan dengan bola lampu biasa (tungsten) saat digunakan. Masa pakai lampu akan lebih pendek jika terdapat oli atau gemuk yang menempel pada permukaannya. Selain itu, kandungan garam dalam keringat manuasia dapat menodai kacanya (quartz envelope). Oleh karena itu, bila hendak mengganti bola lampu hindari jari-jari menyentuh quartz envelope. Sebaiknya pegang bagian flange jika hendak menggantinya.


2) Tipe Sealed Beam

Pada beberapa model sepeda motor generasi sebelumnya, lampu kepalanya menggunakan tipe sealed beam. Tipe ini terdiri dari lensa (glass lens), pemantul cahaya (glass reflector), filamen dan gas di dalamnya. Jika ada filamen yang rusak/terbakar, maka penggantiannya tidak dapat diganti secara tersendir, tapi harus keseluruhannya.

 

Minggu, 20 April 2014

Daftar Pustaka Teknik Sepeda Motor

Daftar Pustaka Teknik Sepeda Motor Jilid 1 SMK



Agus Setiyono dan Supriyadi, dkk. 1995. Buku Panduan Teknik Reparasi dan Servis Bengkel Sepeda Motor. Solo: CV Bahagia Pekalongan

____. AHM (PT Astra Honda Motor). Pengetahuan Produk. Jakarta: Astra Honda Training Centre.

AHM ____. Buku Pedoman reparasi Honda Supra X 125. Jakarta: PT. Astra Honda Motor

AHM ____. Buku Pedoman reparasi Honda Astrea Prima. Jakarta: PT. Astra Honda Motor

AHM ____. Buku Pedoman reparasi Honda Mega Pro. Jakarta: PT. Astra Honda Motor

AHM ____. Buku Pedoman reparasi Honda PGM-FI Supra X 125. Jakarta: PT. Astra Honda Motor

Bagian Publikasi Teknik (2002). Service Manual Yamaha Nouvo. Indonesia: PT. Yamaha Motor Kencana indonesia

Boentarto. 1993. Cara Pemeriksaan Penyetelan dan Perawatan Sepeda Motor. Yogyakarta: Penerbit Andi

Boentarto. 1995. Tanya Jawab Reparasi Sepeda Motor. Solo: CV. Aneka Solo

Boentarto dan Dwi Haryanto. 2003. Kiat Praktis Jual Beli Sepeda Motor Baru dan Bekas. Jakarta: Puspa swara.

B. Bisowarno. 1984. Kenalilah Sepeda Motor Anda. Bandung: Penerbit Tarate. Boentarto. 2002. Menghemat Bensin Sepeda Motor. Semarang: Effhar. Bosch.
 ____. Bosch Spark Plugs and Spark Plug Wires Reference Guide. Bosch Coombs, Mathew (2002). Motorcycle Basics Techbook. 2nd Edition. USA:

Haynes Publishing Daryanto. 1991. Motor Bakar untuk Mobil. Jakarta: PT.Rineka Cipta

Daryanto. 2002. Teknik Reparasi dan Perawatan Sepeda Motor. Jakarta: PT. Bumi Aksara

Daryanto. 2003. Keselamatan dan kesehatan Kerja Bengkel; Buku Acuan untuk Siswa Sekolah Menengah Kejuruan. Jakarta: PT Rineka Cipta.

Divisi Perawatan Sepeda Motor.____. Petunjuk Perawatan SuzukiShogun. Jakarta: PT. Indomobil Suzuki international

Jalius Jama.1982. Motor Bensin. Jakarta : Ghalia Indonesia.

Mas Bagong Mulyono. 2002. Kiat Membeli Sepeda Motor Bekas. Jakarta: kawan Pustaka

M. Suratman. 2003. Servis dan Teknik Reparasi Sepeda Motor. Bandung:

CV. Pustaka Grafika

NGK Sparkplug (USA) Inc. (2006). Racing Sparkplugs for Performance Aplications. Http://www.ngksparkplugs.com Diakses pada Tanggal 12 April 2007.

R.S.Northop. 1995. Teknik Sepeda Motor. Bandung: Pustaka Setia

Saiman dan Boentarto. 1995. Teknik Servis Mesin 2 Langkah. Solo: CV gunung Mas-Pekalongan.

Solihin, Iin dan Mulyadi (2003). Perbaikan Sistem Kelistrikan Otomotif . Bandung: Armico

Sri dadi hardjono. 1997. Pertolongan Pertama pada Sepeda Motor. Jakarta: puspa swara. Anggota IKAPI

Sudarminto. 1970. Motor Bakar untuk STM Bagian Mesin dan Umum. Bandung: carya remadja

Suratman, M, Drs (2003). Servis dan Teknik Reparasi Sepeda Motor. Bandung: CV Pustaka Grafika

TAM ____. Materi Pelajaran Engine Group Step 2. Jakarta: PT. Toyota Astra Motor

TAM ____. Training Manual Gasoline Engine Step 2. Jakarta: PT. Toyota Astra Motor Taslim Rudatin, dkk. 1987. Teknik Reparasi Mesin-Mesin Mobil dan Motor. Pekalongan: CV. Bahagia Batang

Taufan, Mohammad (2001). Volvo Basic Mechanic Training II. Jakarta: PT. Intraco Penta, Tbk

Training Center (1995). New Step 1 Training manual. Jakarta: PT. Toyota Astra Motor.

____. Yamaha Technical Academy. YAMAHA MOTOR CO.LTD.

Yaswaki Kiyaku dan DM. Murdhana. 1994. Cara Praktis Merawat Sepeda Motor. Bandung: Pustaka Setia

Yaswaki Kiyaku dan DM. Murdhana. 2003. Teknik Praktis Merawat Sepeda Motor. Bandung: Pustaka Grafika.

YTA ____. Dasar-Dasar Sepeda Motor. Indonesia: Yamaha Motor CO.LTD

Rabu, 16 April 2014

Aplikasi Ilmu Fisika dalam Sepeda Motor

Aplikasi Ilmu Fisika dalam Sepeda Motor

 
Mempelajari sepeda motor juga memerlukan perhitungan fisika, beberapa besaran ukuran dipakai di bidang ini. Perhitungan fisika diperlukan untuk mengetahui; kapasitas mesin, volume silinder, perbandingan kompresi, kecepatan piston, torsi, tenaga, korelasi antara mesin dan kecepatan motor pada tiap posisi gigi dan daya dorong roda belakang dari sepeda motor, dll.
 
 

Kapasitas Mesin

 
Kapasitas mesin ditunjukkan oleh volume yang terbentuk pada saat piston bergerak keatas dari TMB ke TMA, disebut juga sebagai volume langkah. Volume Aplikasilangkah dihitung dalam satuan cc (cm3). Rumus untuk menghitungnya adalah:
 
 
Keterangan
 
 
Contoh soal:
Brosur motor Suzuki Smash memuat data diameter silindernya 53,5 mm dengan langkah piston 48,8 mm, tentukan volume langkahnya.
 
Penyelesaian:
Diketahui :    D = 53,5 mm
                    S = 48,8 mm
                    p = 3,14
Ditanya Volume langkah adalah...?
 
Jawab:
 
 
Jadi volume langkah dari motor Suzuki Smash tersebut adalah 109, 7 cc dibulatkan menjadi 110 cc.
 
 

Volume Ruang Bakar

 
Volume ruang bakar adalah volume dari ruangan yang terbentuk antara kepala silinder dan kepala piston yang mencapai TMA. Dilambangkan dengan Vc (Volume compressi)
 
 
Volume Silinder
 
Volume silinder adalah jumlah total dari pertambahan antara volume langkah dengan volume ruang bakar.
 
Rumusnya:
VS = Vl + VC
Keterangan:
            VS= Volume silinder (cc)
            Vl = Volume langkah (cc)
            VC= Volume ruang bakar (cc)
 
 

Perbandingan Kompresi

 
Perbandingan kompresi adalah perbandingan volume silinder dengan volume kompresinya. Perbandingan kompresi berkaitan dengan volume langkah.
Bila dinyatakan dalam suatu rumus maka:
 
 
Besarnya perbandingan kompresi untuk sepeda motor jenis touring berkisar antara 8 : 1 dan 9 : 1. ini artinya selama lankgah kompresi muatan yang ada di atas piston dimampatkan 8 kali lipat dari volume terakhirnya. Makin tinggi perbandingan kompresi, maka makin tinggi tekanan dan temperatur akhir kompresi.
 
 
Efisiensi Bahan Bakar dan Efisiensi Panas
 
Nilai kalor (panas) bahan bakar perlu kita ketahui, agar neraca kalor dari motor dapat dibuat. Efisiensi atau tidak kerjanya suatu motor, ditinjau atas dasar nilai kalor bahan bakarnya. Nilai kalor mempunyai hubungan dengan berat jenis. Pada umumnya makin tinggi berat jenis maka makin rendah nilai kalornya. Pembakaran dapat berlangsung dengan sempurna, tetapi juga dapat tidak sempurna.
 
Pembakaran yang kurang sempurna dapat berakibat:
1. Kerugian panas dalam motor menjadi besar, sehingga efisiensi motor menjadi turun, usaha dari motor menjadi turun pula pada penggunaan bahan bakar yang tetap.
2. Sisa pembakaran dapat menyebabkan pegas-pegas piston melekat pada alurnya, sehingga ia tidak berfungsi lagi sebagai pegas torak.
3. Sisa pembakaran dapat pula melekat pada lubang pembuangan antara katup dan dudukannya, terutama pada katup buang, sehingga katup tidak dapat menutup dengan rapat.
4. Sisa pembakaran yang telah menjadi keras yang melekat antara piston dan dinding silinder, menghalangi pelumasan, sehingga piston dan silinder mudah aus.
 
Efisiensi bahan bakar dan efisiensi panas sangat menentukan bagi efisiensi motor itu sendiri. Masing-masing motor mempunyai efisiensi yang berbeda.
 
 
Kecepatan Piston
 
Sewaktu mesin berputar, kecepatan Piston di TMA dan TMB adalah nol dan pada bagian tengah lebih cepat, oleh karenanya kecepatan piston diambil rata - rata. Dengan rumus sbb :
 
            V = Kecepatan Piston rata-rata
            L = Langkah (m).
            N = Putaran mesin (rpm).
 
Dari TMB, piston akan bergerak kembali keatas karena putaran poros engkol, dengan demikian pada 2x gerakan piston, akan menghasilkan 1 putaran poros engkol, jika poros engkol membuat N putaran, maka piston bergerak 2LN. Karena dinyatakan dalam detik maka dibagi 60.
 
 
Torsi
 
Gaya tekan putar pada bagian yang berputar disebut Torsi, sepeda motor digerakan oleh torsi dari crankshaft
 
Torsi = gaya x jarak
 
Makin banyak jumlah gigi pada roda gigi, makin besar torsi yang terjadi. Sehingga kecepatan direduksi menjadi separuhnya.
 
 
Keadaan Didalam Mesin
 
 
 
Panjang dari pemutaran (r) adalah disamakan dengan jarak dari crakkshaft ke crank pin, ini berarti separuh dari langkah piston.
 
Gaya (F) yang dikerjakan pada pemutar disamakan dengan tekanan kompresi yang dihasilkan oleh gas hasil pembakaran yang akan mendorong piston kebawah, oleh karena itu torsi (T) berubah sesuai dengan besarnya gaya (F) selama r tetap.
 
Besarnya gaya F, berubah sesuai dengan perubahan kecepatan mesin ini berarti dipengaruhi oleh efisiensi pembakaran, demikian juga T juga ikut berubah. Pada kecepatan specifik torsi menjadi maximum. Ini disebut torsi maximum. Tapi kenaikan kecepatan mesin selanjutnya tidak akan menaikan torsi.

 
 
Torsi Maksimum
 
Besarnya Torsi maksimum setiap sepeda motor berbeda-beda. Ketika sepeda motor bekerja dengan torsi maximum, gaya gerak roda belakang juga maximum. Semakin besar torsinya, semakin besar tenaga sepeda motor tersebut. Besarnya torsi biasanya dicantumkan dalam data spesifikasi teknik, buku pedoman servis atau dalam brosur pemasaran suatu produk motor.
 
 
Tenaga (Horse Power)
 
Kerja rata-rata diukur berdasarkan tenaga akhir (Torsi dari crank saft menggerakan sepda motor, tapi ini hanya gaya untuk menggerakan sepeda motor dan kecepatan yang menggerakan sepeda motor tidak diperhitungkan. Tenaga adalah kecepatan yang menimbulkan kerja).
 
 
 
        - Satuan tenaga
PS (Prerd strarke in Jerman) 1 PS - 75 Kg m/sec adalah tenaga untuk menggerakan obyek seberat 75 Kg sejauh 1 m dalam 1 secon (makin besar tenaga makin besar jurnlah kerja persatuan waktu).
 
        - Perhitungan tenaga crankshaft
Untuk menghitung berapa kali pena engkol berputar bergerak oleh gaya specifik persatuan waktu (detik)
Kerja (Q)= Gaya (F) x jarak (r)
Torsi (T)= Gaya (F) x jarak (r)
Gaya (F)= Torsi (T) : jarak (r)
Jarak (r) yang ditempuh oleh perputaran crank pin permenit =2prN
 
 
 
            - Hubungan antara putaran mesin dan horsepower (Tenaga)
Tenaga mesin berubah-ubah tergantung dari torsi dan kecepatan putar mesin. Mesin dengan putaran tinggi, biasanya tenaga yang dihasilkan juga besar tapi jika putaran terlalu tinggi tenaga yang dihasilkan akan menurun. Jika pada putaran tertentu tenaga maksimum di hasilkan, maka hal itu disebut "Maksimum power".
 
Keterangan
SI (satuan)
Isi atau kapasitas mesin
1 L (1,000 cm3)
Tekanan
1 kPa (0,01Kg/cm2)
Tenaga
1 kW (1.360 PS)
Torsi
1 Nm (0,1 Kg.m)
 
 
Performance Curves (Diagram Kemampuan mesin)
 
Diagram Kemampuan mesin terdiri dari Engine performa diagram dan ring performa. Engine performa diagram, merupakan indikasi tenaga mesin, torsi, dan pemakaian bahan bakar yang dilihat dari putaran mesin. Dengan kata lain pada “Run ring performance curva diagram" diperlihatkan hubungan antara posisi Gear putaran mesin, Tenaga roda belakang dan hambatan pada saat berjalan dari saat sepeda motor berjalan. Dengan membaca performance curva, dapat dilihat kemampuan dan kelebihan suatu sepeda motor.
 
Gambar 1.2 Diagram kemampuan mesin
 
 
Karakter Dari Mesin
 
Tenaga mesin dan kurva torsinya menggambarkan karakteristik mesin. Ketika putaran mesin berada dalam range yang powernya maksimum dan kurva torsinya lebar, dan terjadi pada putaran mesin yang rendah, mesin ini bertipe mesin-mesin putaran rendah. dan sangat bertenaga pada putaran menengah, singkatnya mesin ini cocok untuk kendaraan jalan raya. Dan jika puncak kurva torsinya lebih sempit dan terjadi saat putaran yang lebih tinggi, mesin ini bertipe mesin putaran tinggi dan sangat cocok untuk mesin motor sport/balap.
 
Secara umum, jika mesin dengan kurva torsi yang lebih tinggi dan yang lebih rendahnya terjadi pada putaran normal/midle mudah dalam penggunaannya. Sebaliknya, jika ada perbedaan yang cukup besar torsinya dalam putaran mesinnya atau jika torsi max-nya terjadi pada putaran tinggi, akan lebih sulit dalam penggunaannya/pengoperas iannya.
 
 
 
Gambar 1.3 Diagram karakter mesin
 
Contoh :
dalam kurva torsi diatas, saat YB 50 dan RZ 50 dibandingkan, YB 50 menunjukkanperforma yang lebih baik saat putaran dibawah 6500 rpm dan kurva itu bagus untuk penggunaan umum.
 
 
Konsumsi Bahan Bakar Spesifik
 
Konsumsi bahan bakar spesifik dan konsumsi bahan-bakar yang menunjukan berapa banyak kilometer yang dapat ditempuh oleh motor dengan 1 liter bensin. Dalam konsumsi bahan-bakar spesifik yang ditunjukkan adalah berapa gram dari bahan-bakar yang digunakan HP /jam secara umum efisiensi mesin tertinggi (konsumsi bahan-bakar spesifik terendah) terjadi dimana kurva power dan kurva torsinya samasama paling tinggi.
 
 
Diagram Performa Mesin Saat Berjalan

Garis vertikal menunjukan tenaga putaran pada roda belakang, hambatan, beban putaran, putaran mesin (rpm) dan garis horisontal kecepatan motor (km/jam) bersuian juga dengan posisi gigi transmisinya.
 
Dari diagram disebelah ini, dapat dilihat hubungan antara putaran mesin dan kecepatan motor untuk tiap-tiap posisi gigi transmisi, antara putaran mesin dengan daya putaran roda belakang. Daya putaran roda belakang adalah daya yang dibutuhkan untuk menaiki tanjakan/daya tanjakan maksimum dan kecepatan maksimum pada tiap-tiap posisi gigi.
 
 
Gambar 1.4 Diagram performa mesin saat berjalan
 
 
Korelasi Antara Mesin dan Kecepatan Motor Pada Tiap Posisi Gigi
 
Korelasi ini bisa dikualifikasikan dengan menyetahui reduksi ratio tiap giginya dan diameter roda belakang (diameter efektif ban/tire effective diameter)
 
 
Jika putaran mesin motor sekitar 400 rpm, kecepatan motor akan berkisar 10 km/h pada gigi 1, pada gigi 2 sekitar 17 km/h, pada gigi 3 sekitar 25 km/h dan pada gigi 4 sekitar 30 km/h. Jika putaran mesin ditambahkan 1000 rpm lagi menjadi 5000 rpm, tenaga dan torsi mesin juga meningkat, yang rnemungkinkan motor dapat menanjak/mendaki dan menghasilkan tenaga yang diperlukan.
 
Kecepatan maksimum praktis mesin adalah kecepatan yang dihasilkan ditiap posisi gigi. Pada motor YB 50 putaran mesin maksimum 7000 rpm. Kecepatan motor akan berkurang secara perlahan setelah melewati putaran 7000 rpm yang mengindikasikan putaran maksimumnya. Tetapi, ketika putaran mesin dinaikkan menjadi 8000 hingga 9000 rpm, kecepatan motor juga menunjukkan peningkatan, tetapi daya dorohg roda belakang berkurang bertahap dan sebenarnya kecepatannya tidak meningkat pada keadaan tersebut. Karena itu, pada pengetesan performa akselerasi mesin, putaran mesin dinaikkan pada nilai maksimumnya 7000 rpm pada gigi 4. Menaikkan putaran mesin sampai daya dorong roda belakang berkurang bertahap disebut "over revolution" dan dapat memperpendek umur mesin. Pada tachometer terdapat daerah peringatan untuk overreving ini.
 
 
Daya Dorong Roda Belakang Dan Tahanan Pada Saat Berjalan
 
Daya dorong roda belakang sama dengan gaya tarik-menarik roda belakang. Motor dapat maju kedepan, dengan adanya gaya tarik ini yang melawan gaya tahanan pada saat berjalan.
 
 
Tahanan pada Saat Berjalan  
 
Tahanan adalah total dari hambatan perputaran (hambatan geseknya pada saat ban berputar pada permukaan jalan), hambatan udara (hambatan angin pada saat motor berjalan) dan hambatan menanjak (pada saat mendaki). Hambatan perputaran dihitung dari hambatan gesekan ban, berat motor. Hambatan angin adalah hambatan dari bagian depan motor, kecepatan motor. Hambatan menanjak adalah jumlah dari perhitungan sudut kemiringan jalan dan berat kotor dari motor.
 
Gambar 1.5 Diagram tahanan mesin pada saat berjalan
 
 
Daya Dorong Roda Belakang
 
Daya dorong roda belakang adalah dari torsi mesin yang ditingkatkan dengan reduksi giginya, gearbox dan gigi sproket. Yang menyebabkan motor maju kedepan dan melawan gaya tahanan saat berjalan.
 
Gambar 1.6 Diagram dari daya dorong roda belakang
 
Hubungan antara daya dorong roda belakang dan gaya torsi adalah:
 
 
Dari kurva diagram kurva tenaga, nilai T dihitung "u" (efficiency transmission) tergantung pada posisi gigi, jenis kopling dan faktor lainnya. Contohnya, pada motor YB 50, besarnya "u" adalah 93 % pada gigi 2, 87% pada gigi 3 dan 85% pada gigi 4. Dari rumus diatas diketahui bahwa daya dorong roda belakang paling besar ketika torsi mesin juga maksimal. Karena itu motor YB 50 mencapai tenaga maksimum daya dorong.
 
Seperti yang ditunjukkan gambar diatas, daya dorong roda belakang dihitung dari torsi putaran crankshaft ditiap giginya dan seluruh ratio deselerasinya. Pada gambar, batas antara garis miring ditiap perubahan giginya (hubungan antara putaran mesin dan kecepatan motor) sehingga pu taran mesinnya pada saat tersebut membentuk garis vertikal pada kurva daya dorong roda belakang ditiap putarannya. Pada kurva berbentuk puncak seperti pada gambar, terlihat garis hambatan jalannya. Kecepatan yang mungkin pada posisi giginya. Dan yang dibawah kurvanya menunjukkan pengendaranya kurang enak, untuk posisi giginya.
 
Contoh, motor dapat menanjak pada gradien 15% pada gigi 3 tetapi tidak dapat menanjak pada gradien lebih dari 25%. Jika diturunkan pada gigi 2, dapat menanjak dengan mudah karena gradien lebih dari 20% pada gigi 2 untuk garis hambatan jalannya. Daya dorong maksimumnya adalah 70 kg saat putaran mesin 6000 rpm (dimana dihasilkan torsi maksimum) dan kecepatannya 15km/h. Pada saat ini dapat menanjak pada gradien 50% (tan 0,5=26,5) atau disebut juga daya tanjak maksimum tetapi dalam penggunaannya, daya tanjaknya ditentukan juga oleh jaraknya terhadap tanjakkan motor dapat menanjak pada kemiringan yang lebih curam, secara umum nilai gradien digunakan jika motor sudah berada pada kemiringannya. Seperti yang terlihat pada katalog , dimana ditentukan juga dari berat motor, koefisien friksi ban dan koefisien friksi jalan. Pada kasus YB50 nilainya =0,32, yaitu 18°. Ketika berjalan pada gigi 4, 30 km/H, daya dorong roda belakangnya 17,4 kg, dengan hambatan jalannya pada jalan rata 3,1 kg, selisih excess marginnya mempunyai daya dorong 14,3 kg. Semakin besar excess marginnya semakin besar kemampuan akselerasi dan kemampuan tanjaknya dan akselerasi sangat dipengaruhi oleh sudut pembukaan gasnya.
 
Perbatasan/pertemuan antara kurva hambatan jalan pada jalan datar dengan kurva daya dorong pada top gear (gigi 4th pada YB50) adalah kecepatan maksimum dari motor, pada YB50 sekitar 74km/h.
 
Semakin curam bentuk kurva daya dorongnya, karakteristik motor lebih sporty/garang dan jika bentuk kurva daya dorongnya semakin rata/flat, karakteristik motornya lebih mudah digunakan
 

Facebook Comments